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1. INTRODUCTION

A measurement program that collects laser backscatter data from
various aerosols and simultaneously makes measurements to characterize
the aerosol environment has been underway at the Harry Diamond Labora-
tories (HDL) for several years. Measurements have been made on water
clouds during helicopter flight tests and on other aerosols such as
smoke, dust, and fog. The purpose of these measurements has been
largely to furnish the data needed to determine aerosol backscatter
effects on active optical fuzing (AOF) systems using GaAs injection
laser transmitters, since such effects could cause false target
problems. This report discusses the results of several related investi-
gations whose purpose was to provide the needed interpretations of the
backscatter data and the methods by which the data can be used to deter-
mine aerosol backscatter effects in various proposed AOF systems. The
measurement program itself is discussed fully by McGuire, Smalley, and
Sztankay.1-3

The methods used for backscatter signal acquisition and subsequent
digitization of the data are discussed in detail by Vanderwall and
Conner.4 The data, a train of received signal pulses, are recorded
during the measurements on video tape in standard television (TV) format
so that each TV frame contains the data for an entire backscattered
pulse. A specially designed electronic frame-code generator applies a
sequential code number to each TV frame during the data recording. By
using another specially designed device, the coded video tape data are
automatically digitized in our laboratory and thereby put in a form
suitable for further processing and analysis by computer.

The immediate question for data usage concerns how backscatter data
obtained with a particular active optical detection system--the measure-
ment system employs a GaAs short-pulse laser probe--can be translated to
apply to another system that might differ from the first in such
respects as range coverage and transmitter pulse characteristics. An
answer can be formulated in terms of an aerosol signature concept,
provided that multiple scattering contributions to the aerosol return
signals can be ignored.

iD. McGuire, H. M. Smalley, and Z. G. Sztankay, Measurements of
Backscatter Effects in Clouds at 0.9 Um (U), Proc. JTCG/MD/WPFF Tri-
Service Optical Fuze Technology Symposium, Naval Weapons Center NWC TP
5871, Part I (October 1976), 45-74. (CONFIDENTIAL)

2 Z. G. Sztankay and D. McGuire, Backscatter in Clouds at 0.9 Pm and
Its Effects on Optical Fuzing Systems (U), Proc. Seventh DoD Conference
on Laser Technology (November 1977). (SECRET)

3Z. G. Sztankay, Measurement of the Localized Optical Charac-
teristics of Natural Aerosols, Smoke, and Dust, Proc. Smoke/Obscurants
Symposium II (25-26 April 1979).

4 Jonathan Vanderwall and Michael Conner, A Novel Scan-Converting
Oscillographic Technique for In-Situ Signal Acquisition with Subsequent
Automatic Digitization, Harry Diamond Laboratories HDL-TR-1956 (1981).
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To develop the aerosol signature concept, consider first the GaAs
laser probe used to collect the backscatter data. It is a pencil beam
active optical detection system employing a short-pulse GaAs injection
laser transmitter and a transceiver influence pattern sensitive from
ranges near the system out to ranges in excess of 10 m. The transmitter
pulse widths, measured by the full width at half maximum (FWHM), are
currently 5 ns, but many of the data were obtained with wider pulses (7
and 11 ns FWHM) using earlier versions of the probe. The shape of the
detected aerosol return pulses depends on several factors besides the
distri~ution of aerosol in the influence pattern. These factors include
the shape of the transmitter pulses and the shape of the range sensi-
tivity curve of the system.

The foregoing dependencies can be expressed in a useful mathematical
form with the aid of the following definitions. Let P(t) and V(t) be
the instantaneous transmitted power and return signal, respectively, and
let x denote range from the transceiver measured along its pencil beam
influence pattern. Define the function of range C(x) by

C(x) = ij(x) exp 2 f0 u(s) d (1)

where (x) and a(x) are, respectively, the volume backscatter and
extinction coefficients of the aerosol at range x. Finally, let R(x)
denote the range sensitivity function of the system. (The function R is
defined as the peak receiver response to a flat reflecting target,
oriented at right angles to and filling the influence pattern, as a
function of range from the transceiver to the target. The scale of
values of R depends on the units of receiver response and the target
reflectivity; ordinarily, some convenient normalization of the scale is
used.) Then V(t) can be expressed as

V(t) - K [0 P(t-T)C(cT/2)R(cT/2) dT , (2)

provided that the receivers respond linearly to the received optical
power; the factor K is a constant depending on the normalization chosen
for R(x) and the units of V(t); c is the speed of light. This result,
originally derived by Burroughs,5 has considerable generality; it
applies not only to the GaAs laser probe, but to virtually all pencil

5H. H. Burroughs, Computation of Cloud Backscatter Power as a
Function of Time for an Active Optical Radar (U), Naval Weapons Center
NWC TP 5090 (April 1971). (CONFIDENTIAL)
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beam active optical detection systems where transItter and receiver are
approximately collocated. However, multiple scattering effects are
ignored in deriving equation (2).

To see the usefulness of equation (2) more fully, suppose that a
pencil beam system satisfying the general requirements of the previous
paragraph is operating in an aerosol environment and that it is desired
to calculate the aerosol return signal. Assuming that the aerosol
distribution is known in terms of its extinction and backscatter coef-
ficients, equation (1) can be used to calculate the function C(x) once
the location of the transceiver and the orientation of its pencil beam
influence pattern relative to the aerosol distribution are specified.
Knowledge of the range sensitivity curve and the instantaneous trans-
mitted power then permits the calculation of the desired return signal
by using equation (2). C(x) is system independent, being determined
solely by the aerosol distribution and the encounter geometry. For this
reason, C(x) is reterred to here as the aerosol signature (for a given
encounter).

The aerosol signature concept easily extends to wide angle influence
pattern systems, since these can be viewed as superpositions of many
pencil beam systems; however, it is unlikely that multiple scattering
effects can be ignored altogether in the wide angle case. To the extent
that such effects can be ignored, the aerosol signature concept provides
a solution to the problem being considered, namely, how backscatter data
obtained with the GaAs laser probe can be made to apply to AOF systems
with a different influence pattern and different transmitter pulse
characteristics. One needs to extract the aerosol signatures, C,
contained in the measured aerosol return signals, V, these being related
according to equation (2), with K, P, and R understood to refer to the
GaAs laser probe. The investigations to be discussed in this report are
concerned mainly with how to accomplish the signature extraction.

There is a simple approximate way to determine the aerosol signature
from the measured return signal. The laser probe features short trans-
mitter pulses (5 to 11 ns FWHM) and is sensitive to aerosol over a range
interval (in excess of 10 m) consistent with fuzing applications. If
one approximates the transmitter pulse by a temporal 6-function, then
equation (2) shows that the return signal is proportional to the product
of the aerosol signature and the probe's range response function. Thus
the aerosol signature can be obtair~d approximately by dividing the
return signal values (expressed as a function of range using the trans-
formation t + 2x/c) by the corresponding values of the range response
function, appropriately scaled. This approximate determination sacri-
fices resolution in the resulting C(x). Since the spatial width of the
transmitter pulse is about 2 m, the C(x) obtained will be smeared rela-
tive to the actual C(x) by a spatial average over about a 2-m interval.

9
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The general signature extraction problem is basically to solve
equation (2) as an integral equation for C(x), given V(t), P(t), and
R(x), and to analyze the errors produced in the solution by the noise
accompanying V(t). In section 2, the problem is formulated as one of
deconvolution, that is, inverting a convolution operator, and a useful
point of view for analyzing noise effects is indicated. In addition,
the transmitter pulses and range-response function of the GaAs probe are
described, and a number of idealized aerosol signatures are computed and
displayed graphically.

In section 3, a formal solution of the deconvolution problem is
given in terms of Fourier transforms, and a formulation of the noise
analysis problem is developed on the basis of the formal solution. Then
a method is presented for the numerical solution of equation (2) invol-
ving the use of the discrete Z-transform. This method leads to a highly
efficient and accurate solution algorithm. A sample computation illus-
trating the accuracy is given.

Section 4 completely analyzes the noise induced errors in the
general signature extraction process. As might be expected, the
critical factors for such errors are the width and the shape of the
transmitter pulse. By making reasonable assumptions about the statis-
tics of the noise present in the backscatter data, the errors in deter-
mining C(x) by deconvolution can be expressed in the form of a signal-
to-noise ratio (SNR). The SNR of C(x) is calculated for a transmitter
pulse that much of the backscatter data were obtained with; the pulse is
somewhat asymmetrical (the leading edge is faster than the trailing
edge) and measures 7 ns FWHM. This calculation was performed by
assuming that the backscatter data were bandpass filtered with various
upper frequency cutoffs so that the effect of data smoothing could be
studied. The results show that the data in question cannot be profit-
ably treated with the deconvolution method because the SNR's of C(x) are
unacceptably low for reasonable amounts of data smoothing and the
typical SNR of the backscatter data (about 15:1, peak signal to rms
noise).

(The foregoing negative conclusions do not apply to backscatter data
that are now being obtained (and that were unavailable when this study
was conducted) . The current data are being obtained with a shorter (5
ns FWHM), more nearly symmetrical transmitter pulse that has consider-
ably more peak power than was previounly available. The combination of
increased SNR for the backscatter data and changed temporal character-
istics of the transmitter pulse could make the deconvolution method
useful for the newer data. Some speculation along these lines is
offered in section 6.

* 10
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A preliminary discussion is given in section 5 of an alternative
strategy for accomplishing signature extraction. This strategy involves
the use of a priori knowledge about the signature and parameter estima-
tion techniques.

2. PRELIMINARY DISCUSSION OF SIGNATURE EXTRACTION PROBLEM

Before considering methods for signature extraction, it is useful to
express the ideas surrounding equation (2) in the language of linear
system theory and to describe in more detail the several functions--
P(t), R(x), and C(x)--that enter into the problem.

2.1 Linear System Description

Equation (2) can be seen to express V(t) as a convolution
integral if the convention is adopted of pu~ting C and R equal to zero
for negative values of their arguments. Then the lower limit on the
integral can be changed to - without affecting the validity of the
equation. Define a new function h by

h(t) = KC(ct/2)R(ct/2) (3)

Then V(t) can be expressed as

V(t) = f P(t-T)h(T) dT , (4)

or, using * to denote the convolution operation,

V = P * h . (5)

Equations (4) and (5) can be interpreted as saying that V(t) is the
output of a linear system whose input is P(t) and whose impulse.response
is h(t). Since the problem of determining the aerosol signature is
essentially that of determining h, it may be said that our problem is to
deconvolve V with respect to P. Other ways of phrasing the problem are
(1) determine the impulse response of the system from knowledge of its
input and output and (2) de'.ermine the input h(t) that produces a known
output V(t) when the impulse response P(t) is known. The latter
phrasing follows from the fact that P * h = h * P and is a convenient
way of looking at the problem for noise analysis.

I
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2.2 Typical Transmitter Pulses, Range Law, and Signatures

The laser probe has undergone several modifications in the
course of its history to improve transmitter pulse and receiver noise
characteristics. Figure 1 shows the shape of a typical transmitted
pulse for the probe's original constitution, measured by using an ap-

proximately 100-ps response time photodiode. The measurement was made
by intercepting the transmitted pencil beam with the sensitive photo-
diode surface (an Instrument Technology Ltd. HSD-50) and recording the
temporal variation of the induced photocurrent. The peak transmitted

power is roughly 5 to 10 W, depending on whether a polarizer is inserted
in the beam; the latter is often the case in experimental flight tests
because backscatter depolarization effects also are measured. The pulse
is about 11 ns wide at the half-maximum points and rises noticeably more
rapidly than it falls. The pulse shape needed in equation (4) is,
however, the result of filtering that which is shown in figure 1 with
the bandpass characteristic of the probe's receiver, which has a band-
width of approximately 200 MHz. This follows because the signal, V(t),
is thusly band limited and from the basic algebraic properties of the
convolution operation. Little change of pulse shape would occur in
figure 1 due to such filtering, though.

The first probe modification resulted in the faster pulse shown
in figure 2. The pulse shape was measured by reflecting the transmitter
pulse into the probe's receiver system, using a properly oriented flat
reflecting surface, and recording the resulting waveform at the receiver
output. Thus the pulse shape shown in figure 2, which is about 7 ns

FWHM, is that appropriate for use in equation (4). The transmitted
optical pulse actually has a much faster leading edge than shown in

figure 2. Measurements using the 3D-50 photodiode showed a rise time
of about 100 ps, which is the photodiode response time. These measure-
ments and the technical details of the pulser design are discussed by
Vanderwall et al. 6  The receiver bandpass of the probe slows this

quickly rising pulse to the extent indicated by figure 2.

6Jonathan Vanderwall, Walter V. Hattery, and Zoltan G. Sztankay,bI
Subnanosecond Rise Time Injection Laser Pulses, Harry Diamond

Laboratories HDL-TR-1697 (March 1975).
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Figure 1. Shape of typical optical pulse from GaAs laser pulser,
measured with 100-ps response time photodiode. This pulser was
original transmitter section of GaAs laser probe for aerosol
backscatter measurements.
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Figure 2. Shape of typical optical Pulse from improved GaAs laser

pulser. Shape was measured by reflecting 
transmitted pulse into

approximately 200-MHz bandwidth 
optical receiver essentially

collocated with transmitter, 
by using appropriately 

oriented flat

reflecting surface. Th~is pu3.ser was transmitter 
section

of improved GaAs laser probe 
for aerosol backscatter

measurements.
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All backscatter data available at the time of this investi-
gation were obtained with the pulse shapes of figures I and 2. Recent
modifications have further shortened the transmitter -Lulses (to about 5
ns FWHM) and have substantially increased the power output level.

The range response of the probe can be adjusted by varying the
angle between the transmitter pencil and the receiver field of view and
by varying the separation between the transmitter and the receiver.
Figure 3 shows a typical range-response curve, one that has been used in
several flight tests. Apart from its precise shape, the curve's main
adjustable features are the range at which peak response is uLtained and
the range interval over which the system is sensitive.

0.04

0.03

0.02

0.01

0

0 2 4 6 8 10 12 14
RANGE (i)

Figure 3. Measured range-response curve, R(x), of pencil beam GaAs
laser probe for aerosol backscatter measurements. Curve was obtained
by measuring peak receiver response to flat reflecting target, oriented
at right angles to and filling influence pattern, as function of range
from transceiver to target. Circled points indicated measurements.
Scale of R has been normalized so that response at 7 m is 1/(7 m)2 .
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fr
The general features of the aerosol signature, C(x), can be

determined by considering a somewhat idealized aerosol density
profile. Suppose that a(x) and ji(x) are as shown in figure 4. Then C
vanishes for x < x0 . For x 0 < x < x10

x a(s) ds (a-) ( x0 ) ds = (I/2)(o/£)(x -x0)2f0 0~s (s= £)

so that

C(x) (x/R)(x - x 0 )e . (6)

For x > x I

a(s) ds a a(s) ds a ds = (1/2)(o/X)X2 + - x0 x 1ix(

so that

C(x) = .e ~ -2a(x-x 1 ) (7)

If distances are measured in units of X, then the three results for C(x)
become

0, for x ! x0 , (8)

C(X)= - x 0 )e(o) , for x 0 < x .e x, (9)

ie-e - 2 0 1( x - x ) , for x > x1  . (10)

Thus, with range measured in units of £, the only parameter upon which
C(x)/j depends is a9. Plots of C(x) according to equations (8) to (10)
for various values of at are given in figure 5. The particular value of
w determines the vertical scale, and the particular value of a for a
given curve in the figure determines the horizontal scale by determining
Z. Put in a more direct way, given the p, a, and X of interest, one
chooses the curve corresponding to the product of a and Z; then V1 deter-
mines the appropriate vertical scale to use and X determines the corre-
sponding horizontal scale.

.4
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x0  x) =x 0 + X'

KX

II

II

01

10 x = x0 +fI

Figure 4. Illustration of idealized aerosol density
profile along pencil beam influence pattern of active
optical detection system. Profiles of extinction
coefficient, a, and baekscatter coefficient, V, are
indicated as function of range, x, from transceiver.
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2 RANGE FROM TRANSCEIVER (MEASURED IN UNITS OF
Figure 5. Aerosol signatures, CVx), calculated from defining
equation (1) for aerosol density profile shown in figure 4 for
various values of dimensionless parameter at (noted near
signature peaks). Range is measured in units of 1, thickness of
aerosol buildup region.



Two points should be made about figure 5. First, the corners
in the signatures at x0 and x are due to the corners in the corre-
sponding aerosol density profile. Since the latter never occur in
reality, the former are always rounded off in real cases. Second, the
mode of presentation is inappropriate for signatures corresponding to
the limiting case X = 0 because then the entire horizontal scale shrinks
to a single point; alternatively, measuring range in units of 2 = 0 is
nonsense. For this limiting case, the signature is given by

0 , for x < x0 . x 1 , (11)

CCx) we - 2 0 (x - x l ) , for x >_ x1 , 
(12)

which is sketched in figure 6.

One further point should be made concerning the aerosol density
profile used in the foregoing calculations. The aerosol is assumed to

extend infinitely far in the positive range direction, and this exten-

sion never occurs in reality. If the range at which the aerosol density

begins to drop out is denoted by x2, then equations (8) to (10) remain
valid, except that in equation (10) the validity is restricted to

x I < x < x 2

The net effect on the signatures of figure 5 is that, from x 2 to the
range where the aerosol finally ceases to exist, C(x) falls to zero.

*- 2o(X - n)

2\

xcx

Figure 6. Aerosol signature for semi-infinite
uniform aerosol distribution with abrupt

, buildup at distance x0 from transceiver.
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3. FORMAL AND NUMERICAL SOLUTIONS OF DECONVOLUTION PROBLEM

3.1 Formal Solution and Effect of Noise

The deconvolution problem can be solved formally in a straight-
forward manner, starting from equation (5). The Fourier transform of
this equation is

V(f) = P(f)h(f) , (13)

where f is the frequency variable and hats are used to denote Fourier
transforms. Thus

h(f) = V(f)/P(f) , (14)

provided that P(f) t 0. The time functions V(t), P(t), and h(t) each
vanish outside a certain time interval. Their vanishing guarantees the
existence and the continuity of their Fourier transforms. If fo is a
frequency for which P(fo) = 0, then equation (13) shows that
V(f ) = 0 as well. Consequently, the right-hand side of equation (14)
takes the indeterminate form 0/0 for such frequencies. It is
nevertheless true that h(fo ) is well defined, and the continuity of all
the transforms involved shows that

h(f i = lr V(f)/P(f) . (15)
0

It is well known that time functions that vanish outside some time
interval give rise to Fourier transforms that can vanish at isolated
frequences only. There is therefore no possibility in equation (15)
that P will vanish in a neighborhood of fo. Thus, if equation (14) is
understood to mean the limit in equation (15) at those isolated frequen-
cies where it is singular, the impulse response h(t) can be obtained
from it by using the inverse Fourier transform, namely,

Shlt) =(f)/Plf e df ( 16)

iL V

Equation (16) expresses a formal solution to the deconvolution

problem. To implement such a solution numerically involves several
difficulties, not the least of which is handling the singular
frequencies at which V and P vanish. Any numerical algorithm that

20
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computes the values of V and P from data giving V(t) and P(t) poten-
tially commits large errors in determining the ratio V/P near singular
frequencies. These errors may in turn contribute significant error in
the numerical evaluation of the integral in equation (16).

A related difficulty of critical importance pertains to the
effect of noise on the signal V(t) in producing errors in the deter-
mination of h(t). At singular frequencies of P, the Fourier transform
of a noisy signal V(t) + n(t) is that of the noise, which can only
fortuitously turn out to be zero. Near such frequencies, the integrand
in equation (16) actually tends to infinity if V is understood to be
that of the noisy signal. Thus, the potential for very large noise
related errors in determining h(t) is clear.

When the noise that accompanies the signal V(t) is known to be
a stationary and Gaussian process, which is a reasonably good assumption
for the laser probe,* a method for analyzing the resulting error present
in the determination of h(t) can be based on the linear system interpre-
tation of equation (5).

The method is suggested by writing equation (5) in the equiv-
alent form

V = h * P , (17)

which can be interpreted as saying that h is the input to a linear
system with impulse response P and output V. Given that the output is
accompanied by a well-characterized noise process, the following can be
asked: What noise process must accompany the input, h, in order that
the given output noise will be produced, assuming that the system, P, is
internally noiseless? This question can be answered in explicit mathe-
matical terms when the noise processes involved are known to be station-
ary and Gaussian. Let <N> and SN(f) denote the mean and the spectral
density of the desired input noise process. Then the mean <n> and the
spectral density sn(f) of the output noise are given by

<n>= <N>P(O) ,

s In ( f ) = P(f)1 2 SN(f) * (18)

*Virtually all the significant noise sources present in direct
optical detection systems are of the Johnson or shot-noise type, except
possibly the avalanche multiplication noise that arises when avalanche
photodiodes are used for detection.
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It follows that

S(f) = s n(f)/Ip(f)12  (19)

for all frequencies such that P(f) * 0. The singular frequencies, foe

at which P vanishes are isolated; however, they may exist, and unless

sn(f) tends to zero sufficiently rapidly as f + fo" SN(f) must become

infinite there.

The quantity of interest is actually

f N df

since this is the mean-squared noise level associated with h; denote

this quantity by <N2 >. If <N2 > can be calculated, it would provide a

precise characterization of the error in h(t) produced by the noise

accompanying the signal V(t). From this standpoint, infinite singular-

ities in SN(f) are acceptable as long as they do not cause the integral

giving <N2> to diverge.

To progress further with the analysis, some way of dealing with

the infinite limits on the integral in question is needed. To see why,

note first that both the noise spectrum sn(f) and P(f) refer to those

that are seen at the receiver amplifier output. In the case

of P(f), the P(t) from which P(f) is to be determined is the result of
filtering the actual transmitted pulse with the receiver bandpass char-

acteristic. Since it is clear that P(f) + 0 as IfI + -, it follows

that IP(f)I -r + in the same limit. Thus, for the integral in question

to converge, it is necessary that sn (f ) tend to zero sufficiently

rapidly as IfI - -. Since no measurements of sn(f) or 1P(f)I are going

to reveal the precise analytic behavior of these quantities for

large If 1, recourse to some other procedure that fixes the asymptotic

behavior of the integrand is necessary. A reasonable procedure,

although certainly not the only one, is to cut off the integration at

some frequency, fc' that is, to consider onlyci
f f 

(f)df

c
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This is tantamount to inserting an ideal low-pass filter between the
amplifier output and our observation point, which procedure is justifi-
able if it can be argued that the chosen cutoff frequency introduces
negligible distortion in the return pulse from the aerosol.

The foregoing analysis is pursued in section 4, where analyt-
ical estimates of the effect of noise are obtained. We now turn to the
numerical solution of the deconvolution problem.

3.2 Numerical Deconvolution

The inversion of the convolution operator by Fourier trans-
forms, while convenient for analytical purposes, does not lead to the
most efficient numerical solution of the problem. To numerically imple-
ment such a solution most efficiently would involve the use of the fast
Fourier transform. Another approach, which is ideally suited to the
digital form of the return pulse dad, uses Z-transform techniques. The
Z-transform is a discrete counterpart of the Laplace transform and has
numerous applications to digital systems and sampled data.7 Io apply Z-
transform methods to the deconvolution problem requires first that the
problem be cast in discrete form. The method leads to a highly effi-
cient numerical solution.

3.2.1 Discrete Formulation

The transmitted pulse, P(t), and the return signal, V(t), are
observed for N periodically sampled times, A seconds apart, in the
interval [0,T], where (N - 1)A T.* In this case, equation (4) is
equivalent to

V(t) = f P(T)h(t-T) dT , (20)
0

where the commutativity of convolution has been used and it is assumed
that P(t) = 0 for t < 0. For the rest of the formulation, it is neces-
sary to assume also that P(0) * 0; this restriction may always be
achieved by finite time translation. A convenient quantization for P
and h is

P(t) = P(nA) , for nA < t 'z (n + 1)A , (21)

/E. I. Jury, Theory and Application of the 2-transform Method, John
Wiley & Sons, Inc., New York (1964).

*The digitization of the data results in N = 512, with A typically

about 200 ps.

23

- V r~ --- --- - ---- ---- - -~

'A4



and

h(t) = h((2n+l)A/2) , for nA < t < (n + 1)A (22)

Evaluation of equation (20) at t = nA yields

n-1
V(nA) = A F h([(2n-I)A/2]-iA)P(iA) . (23)

i=O

Equation (23) may be written more compactly in matrix form if
the following identifications are made:

V' = [V(0), V(A), V(2A), ... V((N-1)A)] , (24)

h' = [h(A/2), h(3A/2), .... h((2N-1)A/2)] , (25)

and

P(o) 0 0 0 . . . 0

P(A) P(0) 0 0 . . . 0

P(2A) P(A) P(O) 0 . . . 0

P ... (26)

P((N-1IA) P((N-2IA) P((N-3)A) . . .. P(021

where the prime indicates transposition. Then equation (23) becomes
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v = APh . (27)

Since P(0) was assumed nonzero, it follows that the determinant of P
does not vanish so that the matrix P has a unique inverse P-1  The
solution of equation (27) is therefore

1 -
h = P V. (28)

3.2.2 Z-Transform Deconvolution

The foregoing discrete formulation shows that the numerical
deconvolution problem is essentially to find the inverse of a large
matrix or, equivalently, to solve a large number of simultaneous linear
equations, namely, equation (27). The Z-transform method can be applied
to equation (27) and results in a rather high-speed inversion of P. To
illustrate the results obtainable in this manner, we show in figures 7
to 10 the res,1lts of a sample calculation.

I Equations (6) and (7) were used with the parameter values 0 =

0.2 m • = 0.01 m sr , x 0 = 2.75 m, and x, = 5.25 m to compute the
aerosol signature shown in figure 7. The parameter values correspond to
a potential encounter with a dense water cloud. The equation

0 , x < 2.67 m

IR(x) = j1.83(l - 2.67/x)(1/x2 ) ,2.67 m < x < 5.89 m (29)

1/x 2 
, x > 5.89 m

was used to compute the range-response function R(x) , which fits the
measured range-response function of figure 3 with fair to good
accuracy. The product of R(x) and the aerosol signature (which is
proportional to h) is shown in figure 8. A unit amplitude transmitter
pulse, u(t), having the form

(1/4)[1 + cos (vt - n)] 2  0 < t < 2/v

u(t) = , otherwise
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was then assumed; the frequency parameter v (' 471 MHz) was set by the
condition civ/v = 2 m (cu/v is the spatial basewidth of u(t)). This
model pulse roughly approximates the measured transmitter pulse of
figure 2, apart from the origin of the time axis, and was used to calcu-
late the return signal shown in figure 9 from equation (23). In equa-
tion (23), h was taken as given by the CR product of figure 8; that is,
the proportionality constant K was set equal to 1, and A was set at 2/3
ns. Finally, the Z-transform method was used to deconvolve the return
signal of figure 9, that is, to solve equation (27) for h = CR, and the
result is shown in figure 10.

The agreement of figures 8 and 10 is excellent, as can be
verified by superimposing tracings of the two waveforms. The relative
shift in range between the waveforms is not a real discrepancy; the
shift is caused by the need for shifting the transmitter pulse in time
so that P(0) * 0, a condition required for the deconvolution compu-
tations. The agreement obtained shows that noiseless signals can be
deconvolved numerically with considerable accuracy. Moreover, the
machine calculations needed to produce figure 10 were sufficiently rapid
to make the deconvolution of large data banks of aerosol return signals
feasible. Unfortunately, the effect of adding even very small amounts
of simulated noise to the return signal is catastrophic. To the issues
surrounding this fact we now turn.
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Figure 7. Computed aerosol signature, C(x), according
to equations (6) and (7) for a = 0.2 m -  V 0.01
m Isr - I , x_ = 2.75 m, and x = 5.25 m. Parameter
values correspond to potential encounter with dense
water cloud.
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Figure 8. Product of aerosol signature of figure 7
and range-response function, R(x), computed from
equation (29).
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Figure 9. Computed aerosol return signal, V,

according to equation (23) for h = CR(K=l) as given

in figure 8, A = 2/3 ns, and P(t) = u(t) = (1/4)[1 +

cos (vt - IT)] 2 (0 < t < 2"/V); V ( 471 MHz) is set

by ci/V = 2 m.
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Figure 10. Product of aerosol signature and range
response function as determined by Z-transform
deconvolution of return signal of figure 9.
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4. EFFECT OF NOISE IN SIGNATURE EXTRACTION

4.1 Numerical Effect

In the measurements of aerosol return signals using the GaAs
laser probe, various noise sources combine to produce a typical SNR
(peak signal divided by rms noise) for all but the most recently
obtained data of about 15. To determine the effect of such a noise
level on the sample numerical deconvolution just discussed, the return
signal of figure 9 was corrupted with simulated noise, giving an overall
SNR of 15, and subjected to the Z-transform deconvolution algorithm.
The resulting deconvolved signal is shown in figure 11. The effect of
the noise was catastrophic. The simulated noise was pr-duced by
filtering random numbers with a third-order Butterworth filter with an
upper frequency cutoff of 200 MHz (the approximate bandwidth of the
amplifiers used in the laser probe's receivers) and then scaling so that
the rms value was 1/15 the peak value of the return signal. To deter-
mine if the catastrophe would disappear for higher SNR's, the decon-
volution computation was repeated for an SNR of 150. The result was
similar to that in figure 11.
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Figure 11. Result of deconvolving return signal of
figure 9 after it has been corrupted with simulated
noise giving overall signal-to-noise ratio of 15.
Noise bandwidth is approximately 200 MHz.II
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4.2 Analytical Estimation of Noise Effects

This section gives an analysis of the effect of noise by
using the ideas and the assumptions of section 3.1. The result of the
analysis is that a good understanding of the phenomenon shown by figure
11 is obtained, and the means for overcoming the noise problem are
indicated.

The starting point is the equation

<N2> =jc Sn(f)/IP(f) 2 df (30)

c

for the mean-squared noise level associated with h,* which is propor-
tional to the product of the aerosol signature and the range-response
function. Equation (30) follows from the basic relation

<N2 > j S(f) df , (31)

equation (19), and the method chosen to fix the asymptotic behavior of
the integrand, namely, to cut off the integral at an unspecified
frequency fc " Although fc is regarded as a variable parameter in what
follows, it cannot be chosen too small since it must correspond to
enough bandwidth to pass the return signal with good fidelity.

To make an explicit evaluation of equation (30) possible, it
is assumed that s n(f) is constant over the frequency interval -fc < f <
fc and that the P(t) from which P(f) is determined is given by the
analytical model

0os 2 (wt/2T) , -T < t < T

P(t) (32)

0 , iti > T

*Equation (30) actually gives the mean-squared noise level

associated with the result of convolving h with the impulse response of
a filter with sharp lower- and upper-frequency cutoffs at -fc and fc"
respectively.
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A plot of the model pulse superimposed on the measured transmitter pulse
of figure 2 is given in figure 12. PO and T were chosen to give the
model pulse the same peak value and the same FWHM as the measured
pulse. The model pulse is only a rough approximation to the measured
one primarily because the measured pulse is not symmetric about its
peak. The model pulse has the advantage of being easily transformed
mathematically in the manner required for the calculation of <N2 >,
however.

II
MEASURED PULSE

WC

I MODEL PULSE -41
I I

I- \
I

I \
I \

I
/

0 510 15 20 25

TIME (ns)

Figure 12. Comparison of shape of model transmitter
pulse P(t) = P0 cos

2 (wt/2T) with that of measured
transmitter pulse of figure 2; T was chosen to give
model pulse same FWHM as measured pulse, and both
pulses are aligned to agree at their peaks.
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The assumption that Sn(f) is constant over the frequency
interval -fc < f < fc implies that the mean-squared noise level <n2 > on
the return signal is related to sn by

sn = <n2>/2f c ; (33)

the return signal being referred to is the actual return signal after
being put through an ideal low-pass filter with cutoff frequency fc
The Fourier transform of the model transmitter pulse is

PT
_ o sin 21rfT

P 1 - (2fT)
1  2ifT (34)

so that

n = <n2> 2Tf fT[1 - (2fT)2] 2
IP(f) 2  2f p2 T 2 1 sin 27rfT (35)

c o

By changing the independent variable to x = 2fT, <N 2 > can be
written as

I2f T

<N 2 > <n 2 > (rx) 2 1 - 2 . (36)
2f P2 T3 J sin 2 lIx

C o

Denote the integrand by I(x) and 2f cT by xc . Then

<N2> - <n2> 1 c I(x) dx . (37)
2f PLT 3 JO
c o

I(x) is everywhere positive and has infinite singularities at x = 2, 3,
.; it is readily verified that, although I takes the indeterminate

form 0/0 when x = 0 or 1, 1(0) = 1 and I(1) = 4. A plot of I(x) is
given in figure 13; the x-axis has also been labeled with the corre-
sponding frequency variable, assuming that T = 7 ns. It is straight-
forward to verify that

k.,
lira c Ix) dx = ( (38)

x +2c
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Figure 13. Sketch of graph of I(x) = ('Tx) 2(1 x x2 )2/sin 2 Thc.

*Frequency axis is determined by x =2fT, with T =7 ns.
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Consequently, for the model being used, it makes no sense to consider

cutoff frequencies beyond T- L  143 MHz. For xc < 2, define

J(xc) = fxc  (x) dx , (39)

which is plotted versus xc in figure 14. The integral was evaluated

numerically by using the trapezoidal rule and an x-axis grid spacing of

0.1. (This approximation slightly overestimates the integral.) Since

<N2 > = (. /P2T3) J(xc) (40)

(eq. 33 has been used here), the curve of figure 14 shows the variation

of <N2 > with the cutoff frequency.

The mathematical origin of the divergent behavior of <N 2 >

as fc + T is the vanishing of P(f) as f + T- . Any transmitter pulse
whose Fourier transform has real zeros will cause the type of divergence
indicated in figure 14. This fact can be seen as follows. Let f denote
the smallest positive zero of p(f). Since P(f) is an even function, it
follows that

<N2 > = 2 1c s(f)/1(f) 12 df g(f) (41)

Since P(f) is necessarily an analytic function for all f, it has the
Taylor expansion

(f - ) (f _ f) 2 + .(42)

df ff +2 df 2 lf=f

which converges for all f. In a sufficiently small neighborhood
of f, P(f) can be uniformly approximated by an expression of the

form a(f - f)m, where "a" is a nonzero constant and m > 1 is an
integer. Thus if sn(f) is merely finite and nonzero in a neighborhood
of f, it follows that

lim gf)= (43)

f +f
c

Equations (41) and (43) show that <N2 > + as fc f "
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The measured transmitter pulse shown in figure 2 has been
numerically Fourier transformed for frequencies up to 250 MHz, and the
transform has been found to have no zeros in this range. Consequently,
the divergence problem will not occur for this transmitter pulse.

It can be argued that the model being used is approximately
correct for all values of fc < T-1 . The validity of the model with a
restricted range for fc can be seen by considering the problem in a
broader perspective. Let h 9 denote the impulse response of an arbitrary
low-pass filter. The mean-squared noise level accompanying h * hk ir,

given by an expression similar to that of equation (30), namely,
Sn(f)

f c A 2n Ih (f)12 df

Ip(f)12

This result follows by applying the arguments surrounding equations (17)
to (19) to the equation V * h£ = (h * hZ) * P and then noting that the
spectral density of the noise accompanying V * ht is given in terms of
that for V by Ih£(f) 12sn(f). By choosing an ideal low-pass filter with
a sharp cutoff at fc' we effectively took

hZ(t) = 2fc (sin 2wf t)/27ff t - h ct) (44)

since 1h (f)12 = 1 for If < f and vanishes otherwise. For the general
filter, the basic requirement for the analysis is that the integral
expression preceding equation (44) be finite. Divergence can come from
two sources: the infinite limits on the integral and any zeros
of P(f). The infinite limits are handled by choosing filters with
appropriate asymptotic behavior as f - t- , such as those with sharp
cutoffs. The zeros of P(f) can be handled only by choosing filters such
that h9, vanishes sufficiently fast at the zeros to overcome the diver-
gence that is automatically present in equation (41) as fc tends to a
zero of P(f). Therefore, the basic requirement for the ideal low-pass
filter with sharp cutoff frequency fc is that fc be less than the small-
est positive zero of P(f) . The last point is important for under-
standing the behavior shown in figure 11.

We now proceed with the analysis for the model transmitter
pulse, keeping the points just raised in mind.

Let h denote the maximum value of h * hc. Then according to
equation (40), the SNR necessarily connected with the determination of
h * hc is
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(SNR)h*hc h1 POT/[45)

The SNR associated with V * hc is

(SNR)V*hc = V&/(<n2>)
(46)

=VW (2fcSn /
2  (

where V' is the peak value of V * hc. Since the transmitter pulse has
very short duration, a large error will not result from using the
approximate relationship V - Eh , where E = POT is the total energy in

the transmitted optical pulse described by equation (32). Equations
(45) and (46) then combine to yield

(SNR)h*hc [c/J (xc)] 1/2 (SNR)Vhc. (47)

If the SNR's of V and V * hc are compared, one finds approximately that

(SNR)V*hc - (fa/fc) /2(SNR)V (48)

where fa is the receiver amplifier bandwidth. Combining equations (47)

and (48) results in

(SNR)h, hc r, IXc/J c)] 1/ 2 (f a/f c) 1/2 (SNRiv V (49)

which is the main result of the analysis.

Equation (49) indicates how, depending on the chosen cutoff

frequency, noise errors in the return signal V are translated into noise
errors in h * hc. The factor [xc/J(xc)l/ 2 versus xc is plotted in

4 figure 15. It shows the progressive degradation in (SNR)h*hc compared

- with (SNR)V*hc as the cutoff frequency increases toward - 143 MHz,

where (SNR)h*hc vanishes. The situation improves significantly if the

measured transmitter pulse of figure 2 is used for the analysis. Figure

16 plots the SNR penalty factor of this case, namely,

(SNR)h*hc/(SNR)V*hc. Also included in the figure is a segment of the
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curve of figure 15 for comparison. The SNR penalty factor curve for the
measured transmitter pulse was obtained from the numerically determined
Fourier transform of the pulse in figure 2 by evaluating the formula

f /

SNR penalty factor = c f (50)
i (0) 12 fc df

0 
IP(f) 

12

numerically for various values of fc

If f c f a 200 MHz, figure 16 indicates thatc a

(SNR)h~hc - 0.15(SNR)v .

Thus for the 15-to-i SNR typical of much of the aerosol return signal
data, the SNR of h * hc is predicted to be about 2. If the aerosol
return signal had an SNR 10 times this typical value, the SNR
of h * hc would be about 20. These predictions apparently contradict
the results of figure 11 and the corresponding results for a simulated
return signal with a 150-to-i SNR. There are important differences
between the transmitter pulses for the two cases, however.

The results of figure 11 were obtained tor a transmitter

pulse, P , given by

(Po/4)(1 + cos Vt) 2 , Itl < it/V

P11 (t) (51)

0 , Itl > it/v

where Po is the peak transmitted power and v m 471 MHz. By a somewhat
tedious calculation, the Fourier transform of P can be found to be

it sin (x 2
P1 1 (f) = 3P , (52)0 V r x _ x 2 ) . x 2 )

where x = 2'tf/v. The expression for Pj t has an infinite number of
zeros, namely, for f = *3v/2i, *4v/2,, .... The smallest positive
zero is f = 3v/2, 225 MHz.
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Figure 15. Signal-to-noise-ratio penalty factor (x0/J(Xc)1'
versus x0 and f for model transmitter pulse of equation (32).

c C
J(xd) is defined by equation (39) and figure 13, x. 2f0T, and
T T 7 ns for fcaxis labeling.
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Figure 16. Signal-to-noise ratio penalty factor versus fc for measured

transmitter pulse of figure 2 and segment of signal-to-noise ratio

penalty factor curve of figure 15 for comparison.

The Butterworth filter used to establish the frequency band

for the simulated noise that produced the results of figure 11 does not

have a vanishing frequency response at 225 MHz. Therefore, in ac-

cordance with previous discussion, divergent behavior in the noise
accompanying the deconvolved signal is expected, regardless of the SNR

of the aerosol return signal.

The unacceptably low SNR of h * hc (- 2) predicted with

equation (50) for fc = 200 MHZ and a measurement SNR of 15 to 1 can be
improved by lowering fc This tack does not lead to acceptable results,

however, because reasonably good SNR's are obtained only for values of

fthat significantly affect the shape of the return pulses. The simple
signature extraction procedure of assuming that the transmitted pulse is

43

. . . . ..

_ .. ,, . .. .. . ... .. .. . . . ., :.. I ,  -  . ' '

.- A



approximately a temporal 6-function gives an approximation of h that is
smeared by a roughly 2-m averaging of the desired impulse response.
This approximation is corrupted also by the measurement noise, but the
SNR is the same for h as for the measured signal V. Thus the simple
procedure and the full deconvolution procedure with its parameter fc can
be compared as follows. The former gives an SNR equal to that of the
return pulse data and a signature shape distorted by a roughly 2-m
averaging. In the latter, both the SNR and the signature shape
distortion depend on fc in the manner of a tradeoff, and there is no
advantage in using the more complex procedure if an improvement of the
2-m averaging and an acceptable SNR cannot be obtained with it. Our
results show that such improvement and an acceptable SNR cannot be

obtained for the 15-to-i measurement SNR typical of much of the back-
scatter data. Nonetheless, a sufficiently high measurement SNR, which

may now be available due to recent probe modifications, would change
this conclusion.

Several additional approaches could be pursued to improve
signature extraction accuracy. One could attempt to modify the trans-

.......-itter pulse shape so as to improve the SNR penalty characteristic. One
could also replace the sharply cutoff observation filter with a more
general type and seek to optimize the results as a function of the
filter characteristic. Certainly the most direct approach is to further
increase the peak transmitted power so as to improve the measurement
SNR. Finally, the use of a priori knowledge about C(x) together with
parameter estimation techniques could be pursued. The latter approach,
which constitutes a new strategy, is given a preliminary discussion in
the next section.

5. ALTERNATIVE APPROACH THROUGH PARAMETER ESTIMATION

The problem whose discussion has occupied the bulk of this report is
an example of what is known mathematically as an ill-posed problem, that
is, one whose solution does not depend continuously on the given data.
For such problems, there is no guarantee that reduction of the errors in
the given data will reduce the error in the solution, and this lack of
guarantee would seem to indicate that the practical obtainment of solu-
tions to ill-posed problems is a matter of fortuity. Such a conclusion
is false, however, because solution methodology is available. Ill-posed
problems are currently of considerable interest in a number of applica-
tion areas, particularly in the geophysical interpretation of seismic
data. The general approaches to a practical solution include the selec-
tive reduction of the information sought and the use of any a priori
knowledge concerning the object under study to provide further con-
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straints on the problem. Our use of a low-pass observation filter is an
example of the selective information-reduction strategy. This section

-of the report discusses a preliminary investigation of applying a priori
knowledge together with the use of parameter estimation techniques as an

alternative approach.

The main source of a priori knowledge for the signature extraction
problem is contained in equation (1), which defines the signature in

terms of the physical properties a and p of the aerosol. Let us model

the aerosol distribution in the influence pattern of the GaAs probe as a

sequence of layers of nonzero thickness, within each of which the

physical parameters 0 and 1 are constant, but allowing that the param-

eter values in each of the layers be arbitrary. This distribution of

parameter values will be the problem solution that we propose to deter-

mine from measured aerosol return signals. How can this determination

be made?

Suppose that the aerosol distribution model has M layers, so that
the 2M parameters 01, P.Ia' 02' 2' . ' aM' IM' which we denote vector-
ially by g, p, are sought. By using equation (1) and the model, the
corresponding aerosol signature C(x,a,p) can be calculated analytically
and depends on our 2M parameters. By next using equation (2), a

similarly parameterized return signal V(t,a, I) can be calculated. The
final step is to seek the parameter values that minimize, in some sense,
the difference between V(t,o,p) and the measured return signal.

There is no question concerning the existence of solutions to the
type of minimization problem outlined since the dependence

of V(t,, ) on a and is continuous, and attention can be restricted to
a compact region of the 2M-dimensional parameter space in seeking solu-

tions (because a priori we know reasonable bounds on the physical pa-
rameters). Difficulties could arise, however, if several relative

minima are present, or in implementing a numerical solution for fairly
large values of M.

The approach just outlined makes substantial use of a priori infor-
mation about C(x) and, if successful, will yield a mathematical formula

for a continuous solution to the signature extraction problem. More-

over, the method will actually give approximate extinction and back-

scatter coefficient profiles (along the influence pattern) so that more

information than is contained in the aerosol signature may be

obtained. The validity of the solution will, of course, be limited by

the noise accompanying the measured signal, but this limitation is no
worse than the measurement noise. The potential lack of uniqueness of

the solutions could pose a more serious problem if all but one of them
could not be ruled out on a priori grounds.
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5.1 Estimation of a and p for Uniform Aerosol

To test the utility of the foregoing approach, the following
problem was considered. Suppose that the GaAs probe is fully immersed
in a uniform density aerosol with constant values of a and U through-
out. Then

C(x) = ,,2a (53)

If a measured return signal is known to have been obtained under such
circumstances, then the problem of determining the values of a and i
from the measured signal can be posed. This is the simplest conceivable
problem of the type being considered. We discuss its solution in the
discrete framework of section 3.2.1.

We assume that the transmitted pulse and the measured return
signal are observed _for N periodically sampled times, A seconds apart,
in the interval [0,T], where T = (N - 1)A. The quantization chosen by
equation (21) gives rise to the N x N matrix P of equation (26), while
equation (24) gives the corresponding discrete representation of the
measured return signal. Equation (24) defines an N-component row vector
V' so that the corresponding column vector is dencted by V. Let h(ap)
denote the column vector with components ie-acna R(cnA/2), n = 0, 1,

, N - 1. Then the column vector representation of our param-
eterized return signal V(t,a,p) is APh(a,u). Thus we seek to minimize,
in some sense, the vector APh(a,V) - V.

The minimization problem is considered for a general
quadratic cost function

J(o,u) = (APh(a,ij) - V)'A(APh(a,j) - V) (54) 1

where A is any fixed positive definite N x N matrix; the prime notation
indicates the transpose operation. The problem is to find specific
values a and P for a and P that minimize J. If A is the identity
matrix, then the minimization is in the least-squares sense; taking A as
other than the identity matrix allows for various other weightings of
the difference vector APh(o,p) - V. A standard approach for such mini-
mization problems is the method of steepest descent--a method of itera-
tively refining estimates of j and P by adjusting their values dependent
upon the behavior of the gradient of the cost function.8

8 A. Sage and J. Melsa, System Identification, Academic Press, Inc.,

New York (1971).
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The method revolves critically on one's ability to determine
a sequence ki) of constants with certain convergence-insuring
properties. Specifically, let ai and Ui denote the estimates at the ith
stage of the descent, and let Ji = J(oi'Pi )" For ai+1 and pi+I' we take

C:)=~ -k,(_Ii 1 (55)a i

where the ki must be such that Ji 1 Ji+1 at every stage of the descent,

and equality holds only in the case Ji = Ji+1 = 0. The explicit con-

struction of ki} for a given problem can be very difficult so that such
sequences are often established by empirical investigation. Such inves-
tigation was the tack chosen for the problem at hand.

Figure 17 shows the constant-cost contours of J for A = the
identity matrix and for the true values a = 0.2 m -1 and 1 = 0.01
m-lsr -1 . Qualitatively similar pictures are obtained for other true
values of a and U. Since the family of trajectories orthogonal to the
constant-cost contours gives the directions of the vector gradient of J,
the examination of such pictures can suggest appropriate paths for the
descent and point out potential difficulties.

The steepest-descent algorithm for k i = 1/i was implemented
on a computer for the problem with true values a = 0.2 m'land v = 0.01
m-1 sr -1 . Trajectories using different initial step sizes (to establish
the first gradient computations) and 25 iterations for a and V are shown
in figure 18. A choice for the matrix A that weighted the values of the
return signal more heavily near its peak produced similar results.

In addition to steepest descent, an intuitive algorithm for
estimating a and p was investigated. The algorithm is based on the
observation that the peak of the return signal depends more strongly on
u, while the decay of the trailing edge depends more strongly on a.
Accordingly, the following algorithm was implemented on a computer:

a. If the peak signal value is smaller than the peak value of
APh(a,O), then decrease P; otherwise, increase p.

b. If the trailing edge of the signal, on the average, decays
more rapidly than that of APh(a,u), then increase a; otherwise, decrease
ao

The sequence l1/i was used again to scale each iteration. The
results obtained with this algorithm are shown for several typical
computations in figure 19, which plots trajectories for several
different step sizes and for the same true values of a and U used in the
foregoing examples.
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Figure 18. Typical trajectories for steepest
descent algorithm with ki= 1/i. True values
are a = 0.2 m-1 and p = 0.01 m-1sr-1 , and
initial guess was a = 0.3 m-1 and pi = 0.02
m Isr-1. Several initial step sizes were used,
and in each case 25 iterations of descent are
shown.
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values and initial guess are as in example of
figure 18. Results for several initial step6
sizes are shown; sequence (1/i) was used to

scale corresponding iteration.
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5.2 Estimation of a and ji from Measured Return Signals

To further investigate the utility of parameter estimation,
the steepest-descent minimization procedure was applied to 10 samples of
measured returns from cumulus clouds. These sample signals were taken
from the HDL data collection (sect. 1) and were selected to correspond
to measurements taken with the GaAs probe fully immersed in approxi-
mately uniform cloud, as determined by another instrument. The matrix A
defining the cost function J of equation (54) was chosen to weight
APh(a,i) - V in proportion to the measured signal value. This choice
makes the model pulse APh(o,p) fit the measured one better where the
signal level is high, thus deemphasizing the effect of measurement
noise. The sequence {ki} used to scale the descent was established
empirically and has the form

ki = c1/(20 + i) , (56)

where the constant CI is determined by normalization conditions.

Figure 20 (a to h) illustrates the results obtained for eight
of the sample signals. The solid curves in these graphs represent APh
for the best-fit values of a and M, and the dots show the sampled values
of the measured return. The results for the remaining two sample
signals gave negative best-fit values for a. Closer examination of
additional data characterizing the cloud regions that produced these
signals revealed that the cloud distributions were decidedly nonuniform.

To determine the practicality of applying the foregoing
approach to multilayer models needs further investigation. While there
exist many computer routines for determining the extrema of functions of
many variables, such routines are typically structured around a specific
problem and might not be effective for other problems. An investigation
of the structure of the M-layer analog of equation (54) together with a
review of available minimization routines should clarify this issue.
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Figure 20. Sampled values ot measured cumulus cloud return
signal (dots) obtained with transmitter pulse of figure I
and range-response curve of figure 3. Solid curves give
APh(o,p) for best-fit values of a and p determined by
steepest-descent algorithm, where measurement system is
assumed to have been fully immersed in uniform aerosol of
unknown extinction and backscatter coetficients.
Appropriate sampling of figure I transmitter pulse and
equation (29) approximation ot figure 3 range response was
used for algorithm computations.
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Figure 20 (Cont'd). Sampled values of measured cumulus
cloud return signal (dots) obtained with transmitter pulse
of figure 1 and range-response curve of figure 3. Solid
curves give Aph(o,p) for best-fit values ot a and p
determined by steepest-descent algorithm, where measurement
system is assumed to have been fully immersed in uniform

aerosol of unknown extinction and backscatter coefficients.
Appropriate sampling of figure 1 transmitter pulse and

, " equation (29) approximation of figure 3 range response was
used for algorithm computations.
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Appropriate sampling of figure 1 transmitter pulse and
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used for algorithm computations.
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of figure 1 and range-response curve of figure 3. Solid
curves give APh(o,u) for best-fit values of a and W
determined by steepest-descent algorithm, where measurement
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used for algorithm computations.
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6. SUMMARY AND DISCUSSION

This report discusses how a growing HDL data bank, consisting ot
measured backscattered laser pulses from aerosols such as weather clouds
and smoke, must be treated before such data can be directly applied to
evaluate the aerosol vulnerability of various AOF systems and methods
for aerosol discrinination. The measurement system, a short-pulse GaAs

laser probe, essentially convolves the features of the aerosol that are

sought, namely, the aerosol signature, with the shape of the probe's
transmitter pulse, after scaling the signature by the system's range-
response characteristic. Thus deconvolution and rescaling are necessary
to obtain the desired aerosol signatures.

Rescaling of the data using the known range-response characteristic
of the probe is straightforward. Deconvolution with respect to the
transmitter pulse, while possible in principle, is difficult to accom-
plish in practice, unless one is willing to accept the spatial resolu-
tion implied by the width of the probing pulses (= 2 m). In the latter
case, deconvolution reduces to a mere additional rescaling.

Two-meter spatial resolution is acceptable for most purposes, but is
a serious drawback in attempting to gauge the buildup rates of aerosol
density near the boundaries of an aerosol distribution. The deleterious
effects of sharply rising aerosol edges on AOF system performance are
likely the most difficult ones to cope with in designing an aerosol
resistant system. It is therefore of great interest to obtain high-
resolution measurements of aerosol signatures in regions where they may
be changing rapidly.

In accepting the resolution implied by the width of the transmitter
pulse, one assumes as an approximation that the transmitter pulse can be
considered as a spatial 6-function for the purpose of unraveling its
convolution with the range-response scaled aerosol signature. This
approximation results in the interpretation of the backscattered pulse
as being proportional to the scaled aerosol signature, and in a roughly

2-m-resolution measurement. It is not necessary to make the foregoing
approximate assumption, however. If the actual shape of the probing
pulse is taken into account, the resulting convolution relation between
the backscattered pulse and the aerosol signature not only is definite,
but also is solvable for the signature, at least in principle. Conse-
quently, increased resolution is theoretically possible through a more
sophisticated interpretation of the data. The bulk of this report
concerns the investigation and the development of this more sophisti-

cated view. The findings and the results are summarized below.

It has been demonstrated that the mathematical process required to

deconvolve backscattered pulses can be economically implemented on a
computer. An algorithm that uses discrete Z-transform methods and is
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ideally suited to the digital form of the backscatter datl has been
coded on computer and shown to be effective. Moreover, the running time
of the program is sufficiently short to make the deconvolution of a
large data bank feasible.

The essential difficulty in determining aerosol signatures by decon-
volution is the effect of the noise present in the backscattered pulse
measurements. A complete analysis of the effects of noise has been
carried out and shows that the magnitude of noise errors in the aerosol
signature depends sensitively on the noise spectrum in relation to the
Fourier transform of the transmitter pulse. For example, if the latter
vanishes at certain frequencies, and if the backscattered pulse's noise
spectrum does not vanish sufficiently r-pidly as these frequencies are
approached, then the mean-squared noise level associated with the
aerosol signature becomes infinite; that is, the SNR of the decon-
volution-determined aerosol signature is zero. This catastrophic result
can be avoided by appropriate filtering of the backscatter data prior to
performing the deconvolution and does not occur at all if the Fourier
transform, P(f), of the transmitter pulse does not vanish within the
bandpass of the measurement system receivers. Moreover, P(f) does not
appear to vanish within the relevant bandpass, which is approximately
200 MHz, since a numerical Fourier transform of a typical measured
transmitter pulse (fig. 2) showed no zeros for frequencies up to 250
MHz. However, backscatter data have been obtained with several distinct
transmitter pulse shapes so that further analysis is required on this
point.

The noise-effect analysis has been applied to the Fourier spectrum
exhibited by the measured transmitter pulse of figure 2. The relation-
ship between the SNR (peak signal divided by rms noise) of a back-
scattered pulse and that of the corresponding deconvolution-determined
aerosol signature has thereby been determined (fig. 16). For the
approximately 200-MHz receiver bandwidth, the results indicate that the
SNR of the aerosol signature is 0.15 times the SNR of the backscattered
pulse. To obtain reasonably good signature SNR's in the face of such a
reduction factor requires a very good SNR for the backscatter measure-
ment. Since the typical SNR for the backscatter measurements obtained
with the transmitter pulse being considered is only about 15 to 1, we
must conclude that the deconvolution method will fail to give acceptable
results for these data.

, Smoothing of the data has been considered as a way of improving thek signature SNR; however, smoothing is tantamount to reducing the measure-
ment bandwidth. The receiver bandwidth, which is actually somewhat
greater than 200 MHz, results in a smearing of the received optical
pulses by a spatial average over about a 0.5-m interval. We term this
averaging interval the bandwidth resolution. Since 2-m resolution of
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the aerosol signatures is already available without detailed decon- I
volution, there is no advantage in smoothing to a bandwidth resolution

approaching 2 m. The effect of smoothing for the case in figure 16 can

be seen by considering what would occur if the bandwidth were reduced to
150 MHz. Then the bandwidth resolution would worsen to about 1 m, while
the signature SNR would be improved by only about 30 percent (fig. 16). I

The most recent series of backscatter measurements has been made by
using a shorter (5-ns FWHM), more symmetrical, and considerably higher
peak-power transmitter pulse than that shown in figure 2. Typical SNR's
for the backscattered pulses, while not yet determined accurately from
the data, are expected to be 5 to 10 times greater than for previous
measurements and therefore should make the deconvolution method more
attractive. A noise analysis using the new transmitter pulse must still
be made; but if the results are not too different from those for the
pulse of figure 2, then signature SNR's approaching 20 to 1 may be
obtainable.

Better signature extraction for the older data may be possible
through an alternative approach. A preliminary investigation of using a
priori knowledge about the signature--mainly its definition in terms of
the physical parameters of the aerosol--and parameter estimation tech-
niques has shown that exellent results can be obtained in simple cases
(where the aerosol is known to be uniformly distributed and to
completely engulf the measurement system). The method applies to all of
the backscatter data presently available and, in addition, seems capable
of providing more detailed information about the aerosol than is con-
tained in its signature. The computational aspects of the method,
however, are considerably more complex than those of direct decon-
volution and may be difficult to implement for highly nonuniform
aerosols.
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